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Abstract 

This paper provides a review of previous research on the use of visual maps as an 

orientation tool for students by enhancing visual-spatial and metacognitive reasoning when 

learning within non-linear environments. Inspired by specific design features of developed 

studies on learning maps, I propose a mapping tool to guide students in learning computer 

programming by aiding the navigation through interrelated and non-linear sets of codes. 

 

Problem Statement 

 Information has gone from scarce to superabundant and increasingly complex due to 

advances in technology and accessibility (Shute, 2011). With the aim of preparing future 

generations with learning experiences that equip them to interact effectively with information, 

new learning paradigms have been integrated into schools such as problem-based learning, 

inquiry-based learning, and expeditionary learning. These learning experiences require students 

to actively retrieve information in non-linear ways and deal with complex sets of data from the 

web and other multimedia sources to solve open-ended problems. These resources are usually 

characterized by their network-like structure of inter-related nodes with stored information in 

various media forms, such as texts, graphics, videos, and sounds (Robberecht, 2007). Students 

are required to actively navigate through these non-linear environments and interact with data in 

multiple ways (Opfermann, Scheiter, Gerjets, & Schmeck, 2013; Oliver & Herrington, 1995). 

The flexibility of these learning experiences can foster engaging, active, and constructive 

learning but also poses significant challenges in how we prepare students to navigate through 

complex information (Opfermann et al., 2013). The main problem is that non-linear learning can 

disorient students in their learning process (Lee & Baylor, 2006; Lin, Hmelo, Kinzer, & Secules, 



1999; Oliver & Herrington, 1995). According to Conklin (as cited in Lee & Baylor, 2006), 

disorientation is the “tendency to lose the sense of direction and location in non-linear 

environments.”  This disorientation can limit instructional effects by distracting students in the 

learning process and requiring a longer time to complete tasks (Opfermann et al., 2013). This 

problem can negatively affect students’ learning outcomes and also prevents teachers from 

incorporating non-linear learning experiences as part of their lessons. 

 Previous research on nonlinear learning environments has identified two main internal 

causes for students’ disorientation: 1) students’ lack of visual-spatial skills needed to understand 

the structure of the nonlinear information (Baylor, 2001; Lee & Baylor 2006), and 2) students’ 

lack of metacognitive skills needed to recognize their current positions and next directions of 

their learning processes within the structure of information (Dunning, Heath, & Suls, 2004; 

Mazumder & Finney, 2012; Yeung & Summerfield, 2012). There are also other non-internal 

causes for this problem, such as design problems of the instructional materials (Oliver & 

Herrington, 1995; Robberecht, 2007; Tufte, 1990, 1997, 2000, 2006) or lack of professional 

training for teachers on how to implement these non-linear learning environments (Inan & 

Lowther, 2010), but for the purpose of this paper, we will only focus on the internal causes. 

Ideally, well-oriented learners should be able to recognize their current positions and next 

directions (Lee & Baylor, 2006) by engaging actively in visual-spatial and metacognitive 

processing. On one side, visual-spatial thinking can be explained as the “ability to perceive the 

whole picture from only the parts” which is particularly relevant for information processing 

(Baylor, 2001). To explain this, David Hyerle (1996) makes the analogy between dealing with 

complex information and navigating through a forest, where you are required to see, 

simultaneously, the forest and the trees to have the macro-vision of the whole subject as well as 



the complex micro-vision of interrelated details.  On the other side, metacognition is commonly 

defined as the ability to understand and monitor one’s own thoughts and the assumptions and 

implications of one’s activities (Favell, 1987). It could be understood as the ability to “drive” our 

own brain, where you are required to know where you currently are and the alternative routes to 

reach your objectives. Similarly, Brown (as cited in Lee & Baylor, 2006) depicts metacognition 

as awareness and control or regulation about cognition and learning process. When learning 

within nonlinear environments both aspects of metacognition are required: awareness of your 

current level of understanding of the information and control to take navigation decisions to 

improve it (Lin, 2001). This ability allows students to take advantage of information to 

effectively solve problems (Lin, Hmelo, Kinzer, & Secules, 1999) and avoid overcommitting 

time and resources to decisions that are based on unreliable evidence (Yeung & Summerfield, 

2012). Hyerle and Alper (2011) said that oriented learners navigate through nonlinear 

environments in a similar way that a person equipped with a GPS would do through a forest. The 

GPS provides a map to visualize the whole forest from the top while the person can still see the 

trees. The GPS also provides the current location of the person, as well as points of reference and 

roads, in order to take decisions and navigate.  

Previous studies have suggested different ways to support students’ orientation in 

nonlinear learning environments by fostering visual-spatial and metacognitive reasoning. Many 

studies have focused on providing support for metacognition because it has been proven that 

despite the benefits of metacognition as a tool to navigate through complex information, students 

do not spontaneously engage in metacognitive thinking unless they are explicitly encouraged to 

do so (Lin, 2001; Bannert & Mengelkamp, 2013).  It is not surprising that many of them have 

suggested the idea of using maps to guide students’ orientation. In the following section, we will 



review different studies on how maps can support visual-spatial and metacognitive reasoning and 

their impact on learning in nonlinear environments. Each study will be explained with a brief 

description, an overview of the finding, and an analysis of strengths and weaknesses.  

 

Literature Review 

Open Learner Models 

 Bull and Kay (2013) argued that Open Learner Models (OLM) could support 

metacognitive activities. Open Learner Models are digital graphic models that capture the 

learner’s present understanding of a domain based on their interaction with an interface. Using 

user’s data such as navigation choices, answers to questions, problem-solving attempts, and time 

on task, they generate a representation of the learner’s current state of understanding in relation 

to a whole model of the domain or subject of study. Learner models are commonly a backstage 

part of intelligent tutoring systems, used to automatically generate instruction adapted to the 

learner’s state of understanding. The authors’ argument is that tutoring systems that leave learner 

models available for the user could support metacognitive reasoning by confronting the student 

with a representation of their understanding. To explain this, the authors classified and 

qualitatively analyzed an array of OLMs with the aim of identifying design principles and 

features for supporting metacognitive activities.  



 

Figure 1 Example of an Open Learner Model from an Intelligent Tutoring System 

 

 Findings. Across all the variety of OLMs, Bull and Kay (2013) identified different design 

models. Some models compared the individual level understanding with points of reference such 

as the whole domain, peers’ current understanding, or tutor’s expectations. Other features aided 

students’ decision making by providing a clear visualization of their starting point. Others 

provided the means to alternatively visualize the big picture of the whole learning domain or 

zoom to focus on content details. Some were designed to help the learner identify any 

problematic issues and then find solutions on their own. Worth mentioning are OLMs that 

allowed user interaction to negotiate their levels of knowledge and increase learner control.  

Analysis. The study of Open Learner Models provides valuable insights on how designed 

graphic representations can mirror learners’ understanding with the aim of supporting 

metacognitive activities. Nevertheless, as the authors mentioned, it is now necessary to 

scientifically assess and interpret metacognitive activities using OLMs (Bull & Kay, 2013). This 

study can potentially compare navigation data of students with and without access to OLMs to 



analyze their metacognitive behavior. Another shortcoming of many OLMs is the lack of 

opportunities for student’s interaction. Finally, OLMs are not a common feature in web pages 

and tutoring systems, which make them an inaccessible metacognitive tool.  

 

Metacognitive Maps 

 Lee and Baylor (2006) proposed Metacognitive Maps to support metacognition in web-

based learning processes. A metacognitive map is a visual interface tool designed to aid four 

main metacognitive skills: planning, monitoring, evaluating, and revising. It is composed of three 

parts: global, local tracking map, and planning space. The global map is used to show the 

structure of the entire learning content, and to guide students to plan their activities effectively. 

The local tracking map is used by learners to check what they have already done, and decide 

what they need to do next. Finally, the planning space provides a mechanism to support learner’s 

premeditated planning to the learning tasks (i.e.: define learning goals, strategies, and expected time).  

 

Figure 2. Screenshot of the Metacognitive Map software 



 Findings. The authors proposed and described this specific design to support 

metacognitive reasoning within web-based learning environments (Lee & Baylor, 2006). The 

visual representation allows user interaction, which places in students the responsibility of 

tracking their progress and completing the planned goals to induce metacognitive reasoning.  

 Analysis. One strength of this design is its foundation on theory on metacognitive and 

visual-spatial thinking. It provides concrete features to support the key skills of metacognition 

and it also provides support to visual-spatial orientation through the global and local tracking 

maps. It is valuable that students have an active role in the interaction with the platform. 

Nevertheless, as the authors pointed out, it is necessary to empirically evaluate how effective it is 

supporting metacognition and learning (Lee & Baylor, 2006). Regarding accessibility, it is also 

restricted to web pages or software that include this feature, which is generally rare.  

 

Thinking Maps®  

 David Heyrle (1996; 2011) proposed Thinking Maps as a visual-verbal language for 

thinking and communicating with the aim of supporting students’ capacity to transfer 

knowledge, reflect upon, and improve their thinking abilities. This language consists of a series 

of eight Thinking Maps or visual-verbal models that represent the following eight cognitive 

operations: seeking context, describing attributes, comparing and contrasting, inducting and 

deducting, identifying part-whole relationships, seeking causes and effects, and making 

analogies. Besides the eight models, there is an additional map called the “metacognitive frame”, 

that may be drawn around any of the maps as a space for identifying and sharing one’s frame of 

reference for the information used in the Thinking Map (i.e.: personal stories, culture, belief 

systems, influences, etc.). Thinking Maps, by mirroring cognitive patterns, help students to 



become conscious of their mental operations and transfer them into any learning environment. 

Thinking Maps can be integrated into any subject domain and ideally must be introduced in 

schools as a common visual language for thinking and learning across the whole learning 

community in order to generate an orchestration of interdependent thinking process. This way, 

Thinking Maps becomes a tool to tap cognitive patterns, make them visible, mediate them, assess 

them and enhance them. The model also evolved to software (Hyerle & Gray Matter Software, 

2007) that provides tools for students to generate the same Thinking Maps within a digital 

platform. The software is designed for both teachers and students through a three-window 

approach: a window for lesson planning for the teacher, a window for the generation of Thinking 

Maps for students, and a window for students to transfer their maps into writing. Teachers can 

also generate Thinking Maps of the lessons, create plans and assessments, or capture evidence of 

progress.  

 

Figure 3. The set of eight Thinking Map basic units of language 

 Findings. Since the publication of Thinking Maps in 1988, numerous studies have been 

conducted to demonstrate their impact in learning. Researchers found that Thinking Maps can 



improve students’ ability to see relationships between main ideas and supporting details and that 

this in turn led to higher scores on reading and writing tests (Cronin et al. as cited in Hyerle, 

1995). Similarly, studies conducted in schools in the US demonstrated significant improvements 

in standardized tests over successive years of implementation of Thinking Maps with many 

schools doubling their scores (Hyerle, 1996). Also a shift from passive to interactive learning 

fueled by students’ motivation was observed. Thinking Maps have been especially successful in 

schools that have implemented them across all disciplines, throughout grade levels, and over 

several years. Consequently, schools generate a “common thinking process, vocabulary and 

visual language” (Hyerle, 1995). According to teachers, the maps have effectively helped 

students become independent and reflective learners. Students become more aware of how the 

maps display what they learned which turns in metacognitive dialogue among the learning 

community (Hyerle, 1995).  

 Analysis. Thinking Maps provide a dynamic set of visual tools to support effective 

navigation through non-linear environments. Moreover, when implemented across learning 

communities, they provide a common language to translate students’ thinking process and 

enhance metacognitive activities. Even if it is necessary to provide strong professional training 

for teachers on Thinking Maps, the entry barriers are lower as opposed to the other tools where 

specific software is required to generate maps. In this case, students build their own maps, which 

contribute to students’ construction of learning and to the generation of a graphic representation 

to support metacognitive activities such as self-explanation, self-evaluation, decision-making, 

and planning. Furthermore, Thinking Maps are basic structures or primitives which allows 

multiple possibilities of combinations, expansions, and applications making them an open system 

for learning.  



Representation of problem solving stages 

 Loksa and colleges (2016) developed an approach to enhance metacognitive skills in the 

instruction of problem solving within the context of a computer programming camp. They 

proposed a series of interventions to help students  recognize, evaluate, and refine their problem 

solving strategies. One relevant intervention from the perspective of our analysis was a visual 

representation of problem solving stages to help learners monitor their understanding. 

Concretely, it consisted in a physical handout with a diagram map that detailed programing 

problem solving stages and encourages learners to track their current stage and plan next actions 

with the aid of reflective prompts.  The diagram depicted six key stages for problem solving: 

interpret problem prompt, search for analogous problems, search for solutions, evaluate a 

potential solution, implement a solution, and evaluate implemented solution. Besides that 

representation, they also provided other strategies to enhance metacognition such as explicit 

instruction of the goals and activities, and context-sensitive prompts. 

 

Figure 4. The paper handout to track problem solving stages 

 Findings. To measure the effects of the mentioned interventions the authors compared a 

traditional version of a web development camp (control) with an experimental version of the 



same camp, which included the described interventions (Loksa et al., 2016). To assess 

metacognitive awareness, campers completed an end-of-day survey asking to reflect on a 

difficult task and their attempt to solve it. They found that campers in the experimental group 

were significantly more likely to write an explicit description of a problem solving strategy. This 

demonstrates the effectiveness of the diagram together with the other interventions to enhance 

metacognition.  

 Analysis. This study provides interesting insights on how visual representations can be 

complemented with instructional strategies to enhance certain behaviors such as monitoring, 

revising and evaluating. Complementary interventions such as prompting are particularly 

important in metacognition since it is an activity that does not happens spontaneously. As a 

result, the experiment shows how the interventions working together contribute to self-awareness 

during a problem solving process. Nevertheless, it is not possible to see the relative contribution 

of the different interventions to this outcome. For instance, there is no evidence of the influence 

of the diagram itself on the observed metacognitive outcomes. Furthermore, it is not possible to 

know if the particular visual form of the representation contributed to the outcomes.  

 

  



Solution proposal  

SeeSe, programming map to see sequences of code in JavaScript 

 In the previous section, I reviewed some examples of initiatives to enhance visual-spatial 

thinking and metacognition using visual maps of the learning process in order to guide students 

within the context of non-linear environments. We can conclude that maps could be a powerful 

tool for students to navigate through learning environments where information is complex and 

interrelated. In a similar way, and following the ideas of Loksa and colleges, maps may aid the 

learning process of other non-linear reasoning tasks such as learning computer programming, 

which is rapidly becoming a 21st century literacy. Recent studies on software engineering 

expertise have found that the most successful engineers are systematic and self-aware (Lee & 

Ko, 2015). Furthermore, studies have demonstrated that within the context of learning computer 

programming students’ development of metacognitive strategies had a significant short-term and 

long-term effect on students’ learning outcomes (Volet, 1991; Loksa et al., 2016). According to 

Loksa and colleagues (2016), learning programming involves more than merely knowing a 

language’s syntax and semantic; it requires an “iterative process of refining mental 

representations of computational problems and solutions, and expressing those representations as 

code.” In other words, students need to translate their mental representations of computational 

problems into a new language that is the language of the computer or code. Using maps to tap 

into those mental representations may help learners monitor this complex process. Based on this 

idea, SeeSe map was developed as a tool for students to guide them in the process of building an 

assertive mental representation of computational code by creating a visual representation of it. 

SeeSe is a tool for learning basic aspects of JavaScript in computer programming with a focus on 

teaching the structural aspects of the code by making thinking processes visible. It is worth 



mentioning that while Loksa’s and his colleagues intervention was focused in scaffold problem 

solving thinking this tool focuses on support structures and the sequencing thinking characteristic 

of computer programming.  

The main objective of this tool is teaching students how to think when programming, 

specifically by fostering their visual-spatial and metacognitive skills. It is grounded in the revised 

theory that generating maps to make thinking processes visible facilitates student reflection and 

orientation (Bull & Kay, 2013; Hyerle, 1995; Lee & Baylor, 2006). The main difference with 

other technologies, such as Scratch or Blocky, is that those tools provides a visual interface on 

top of code, where students can program things without writing code at all. As a result, most 

learners use these tools to create content, possibly avoiding coding all together (Scaffidi and 

Myers, as cited in Loksa et al, 2016). SeeSe on the other side is designed for students to embrace 

the complexity of real code by exercising the ability to build mental representations of it and 

translate them into visual structures that can scaffold the understanding of code syntax. 

JavaScript is programming language commonly used in web development to add 

dynamic and interactive elements to websites. A JavaScript code is composed primarily of 

values. These values can be fixed such as numbers or strings (text) or variables that are used to 

store data values. Basically, a JavaScript code is list of instructions to be executed by the 

computer in order to compute values. Those instructions are called statements that, in general, 

are a combination of values, variables, and operators, which compute a value. This computation 

is called evaluation. JavaScript code can be understood as a unique sequence of inter-related 

instructions meant to evaluate values. That means that behind the complexity of the code there is 

a logic structure where one statement leads to the next statement in a predetermined order. The 

understanding of this sequential logic of JavaScript code is the key to knowing how values are 



going to be evaluated by the computer. This understanding can be challenging for students, 

because each statement of the code generates new evaluations of variables previously defined, 

making difficult to keep track of the values throughout the code. In other words, students may 

get disoriented in the sequence of code. For this reason, a map that visually represents the 

sequence of statement and the stages of the values may aid students in this process.  

Maps and diagrams can be understood as visual languages. According to Robert E. Horn 

(1998), visual languages are defined as an integration of words and shapes into a single 

communication unit. In the same way, a SeeSe map, can be understand as a visual language and 

its components can be classified into vocabulary and grammar. The vocabulary of this language 

consists in shapes with the form of containers that store values written as words or numbers. In 

addition, the grammar is a set of rules to put the vocabulary together in order to make visible the 

sequential aspect of the code (see figure 5). Using these two components students can translate a 

code written in JavaScript into SeeSe visual language. The result will be a map representation 

that may reflect students’ understanding of the sequence of statements and their evaluation of 

values through the code (see figure 6). Following the design principle of the Open Learner 

Model and the Metacognitive Maps, confronting the learners with a representation of their 

understanding can enhance metacognitive activity and visual-spatial skills.  



 
Figure 5. The vocabulary is the set of container shapes to represent the variables and values. The grammar is a set of 
rules about how to organize the shapes in order to convey the sequential aspect of the code.  

 Both the vocabulary and the grammar of SeeSe were based on design principles of 

previous research. The vocabulary was inspired by DiBiase’s (1995) experiment of scaffolding 

the understanding of abstract mathematical functions using objectification through visual or 

physical representations. In a similar way SeeSe represents abstract concepts such as variables 

and values as boxes to store different things. The grammar was influenced by the work of David 

Hyerle (2011) and the Thinking Maps, specifically the flow diagram. This map was first 

developed by the pioneer of modern computer sciences, John Von Neumann (1903 – 1957), as a 

way to visually represent computer instructions for people understanding (Horn, 1998). Since 

then, the flow map is used to show a flow or set of sequential processes in a system where one 

event leads to another. For instance, flow diagrams are used to represent timelines, cycles, 

programs, etc. This map provides a suitable structure for learners to see the logical sequence that 

relays behind the inter-related statements of the code. The flow map of SeeSe has particular rules 

about how to place the containers in order to reveal the sequence of the code and to keep track of 

the successive evaluations.   



Figure 6. A SeeSe map of a JavaScript code   

 As any new language, SeeSe needs to be taught and practiced in order to reach its full 

potential as a tool for metacognition and visual-spatial thinking. For this purpose a curriculum 

was designed for teachers to train learners in the acquisition of the visual language and to support 

metacognitive reasoning using the resulting maps (see Appendix). The curriculum was 

developed for adult learners with no previous experience in JavaScript. It is composed of 

explanations on how to teach the vocabulary and the grammar, exercises to translate code from 

JavaScript to SeeSe and vise versa, and self-reflective prompts and peer-evaluations to 

encourage metacognitive activity.  For the moment, students can generate a SeeSe map using 

analog tools as paper and pencil to draw the map, but this process can be easily transferred into 

software designed to facilitate the creation of SeeSe maps. It is worth to highlight that SeeSe 

maps, as any other visual representation, may not encourage metacognitive activity if it is not 

complemented with instruction for this purpose. For this reason, a future development of 

software could incorporate reflective prompts to reach the full potential of the tool to support 

revising, evaluating, and monitoring.  



 While the development of SeeSe and its curriculum its theoretically grounded, it is 

necessary to empirically assess the effects of this support tool to understand how it impacts the 

learning process. The primarily expected outcomes of the implementation of the curriculum are 

an increment of visual-spatial skills and metacognitive skills in students. Visual-spatial skills 

must be reflected in their ability to see simultaneously the whole picture and the details. In 

computer programming, this can be interpreted as the ability to see how each statement works 

individually and how it is tied to the whole structure of code in order to compute values. 

Students’ elaboration of a SeeSe map, might boost their visual-spatial skills by providing a 

representation of the whole structure of the sequence where they can see the whole picture of the 

code as well as the details of how the values are computed statement by statement. In addition, 

metacognitive activity in computer programming can be understood as students’ ability to 

monitor their understanding of the sequence of code and revise their evaluation process. Making 

SeeSe maps can also foster metacognitive thinking by providing a visual language to translate 

their understanding of the sequence and a means to evaluate each stage using the graphic 

containers. The resulting visualization may support several metacognitive strategies relevant for 

computer programming such as self-explanation, de-bugging, and revising. In addition, the 

elaboration of SeeSe maps within a community of learning may booster collaboration and 

reflective dialogue as a consequence of allowing all students to speak the same visual language 

to convey their thinking process. SeeSe map could be a rich tool for teachers and classmates, to 

access to each other way of representing the code, which can facilitate dialogue and assessment.  

Because the purpose of SeeSe maps is to improve the way students think about computer 

programming, another general expected outcome is a robust understanding of basic principles of 

JavaScript language. Specifically they may have a better conception of the sequential structure of 



the code and how each statement is inter-related to others in order to compute values. In addition 

to all these aspects, it can be evaluated if learning basic concepts of JavaScript using SeeSe may 

impact how students interpret more complex or advanced sets of code. Finally, the possibility of 

opening the scope of this visual language to other aspects of JavaScript such as functions is 

subject of future research.  

Conclusion 

As we move to more complex systems of information fueled by technology, we need to 

help students navigate through them. Furthermore, we are faced with the challenge of preparing 

future generations to build and develop those complex systems by integrating computer science 

at schools. We must provide students with flexible tools capable of making complexity 

accessible and comprehensible. Visual languages such as maps and diagrams have the potential 

to depict and communicate complex information in precise and efficient forms. Integrating visual 

languages into schools could enable students to think about complex processes and engage in 

skillful metacognitive analysis without loosing the sense of direction to reach their learning 

goals. Regardless of the strong theoretical foundations of this idea, more empirical research is 

required to demonstrate the potential of visual tools to improve learning outcomes in todays’ 

non-linear learning environments.  
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Appendix 

CURRICULUM: SeeSe, programming map to see sequences of code in JavaScript 

Understanding JavaScript variables using maps to represent sequences of values 

 

SeeSe is a mapping tool for learning basic aspects of JavaScript variables in computer programming with a focus on 

teaching the structural aspects of programming by making visual thinking processes visible. The main objective of this 

tool is teaching students how to think when programming specifically by fostering their visual-spatial and metacognitive 

skills. It is grounded in the revised theory that generate maps to make thinking processes visible facilitate student 

reflection and orientation.  

A SeeSe map consists of words and shapes integrated into a single representation. It is composed by a) shapes with the 

form of containers that store values written as words or numbers, and b) connectors that follow a set of rules to put 

the shapes together in order to make visible the sequential aspect of the code. Using these two components students can 

transate a code written in JavaScript using a SeeSe map. The resulting visual representation may reflect students’ 

understanding of the sequence of statements and their evaluation of values through the code.  

 

Learners 

-Adult students with no previous experience of coding in JavaScript 

Assumptions (students' previous knowledge of JavaScript) 

-Strings 

-Numbers 

-Operators: Basic arithmetic operators / String operators 

 

Materials  

-Paper and pencil for students  

-Whiteboard for teacher 

-NO computers 

 

Overview   

5 sessions of 2 hours each 

- Session 1 = Unit 1 / Variables  

- Session 2 = Unit 2 / Functions (In development) 

- Session 3 = Unit 3 / Variables + Functions (In development) 

- Session 4 = Quiz  

- Session 5 = re-Quiz and discussion 

 

 



UNIT 1 / Variables 

 
Outcome: 
Understanding the concept of variable using the box analogy.  
Adquisition of the visual syntaxis for variables. 
 
Knowledge (Students will understand that) Skills (Students will be able to) 
 
- Variables are like boxes  
- Each variable box need a label or name that is arbitrary but 
preferable meaningful 
- Variable boxes can (and cannot) store values and those values 
can be anything 
- Possible values to store are: numbers, strings, other 
variables, combinations using operators 
- The values stored can be changed in the same way that you 
change the content of a box 
- Previous values stored disappear after you put another value 
inside 
 
Predictable misunderstanding to tackle: 
- What happens with the values that were previously stored in a 
variable 

 
- Create variables using the box visualization 
- Name variables with arbitrary names using the label 
visualization 
- Store values inside variables of different kinds including 
other variables and operators 
- Change values stored in the boxes 
- Translate a code wrote in JavaScript to the visual language 
and vice versa.  

Essential Questions Assessment: Learning Evidence 
 
- Do you have any box in your room? What do you store inside? 
Have you ever used it previously to store other things? Do you 
put labels to identify your boxes? 
- How would you name your variable box? Why? 
- What would you store inside?  
- If I give you something different, could you store it inside 
your box?  
- What would happen to the things that you had stored inside 
previously? 
- When do we need to define variables? Why variables are useful? 
-Which is the value of x variable in this point of the code? 
Wich is in this other point? 
 

 
- Peer review of their translation sheets, self-explanations, 
analysis of how students are using the visual language  

Learning Activities 
1.Introduction to variables and values 
- Variables are like boxes 

 
 
- You can put a label or name to your box which can be arbitrary 
but preferable meaningful. When you name a variable you are 
defining the variable. For example you can define a variable 
with the name of myToys 
  

 
 
-Variable boxes can (and cannot) store things. Those things are 
known as the value of the variable. You can store anything. For 
example, you can store LEGOS into your myToys box 
 

 
 
2. Changing values 
- The value stored in the variable can be changed to new values. 
For example, if you grew up you will want to use the same box to 
store your new toys, like your iPod 
 

 
-As a difference with real like, in the case of variables boxes 
previous values stored will disappear  
 
 

3.Introducing the visual language 
To simplify our visual language, we are going to use the 
following visual symbols: 
 
This is the icon for variable: 

  
 
This is the icon for a variable with a name or label 

 
 
This is how you represent the value stored in a variable 

 
 
This is how you represent that a new value has been defined 

 
 
*Notice that we are using a sequence flow structure to 
represente how the values change in a variable. This structure 
is similar to a timeline because we need to represent successive 
stages of the same thing, in this case different values of a 
same variable.  
 
4. Translate a code wrote in JavaScript syntax to the visual 
syntax and vice verse (next page) 



 
 
 
Examples of translation 
 
JavaScript Syntax Visual Syntax 
var age = 8 
age = 17 
age = 35 
 

 
 

var pizzaIngredients = “tomato, onion, mushroom” 
pizzaIngredients = “cheese” 
  
 

 
 

var secretNumber = 6 
secretNumber = age 
secretNumber = age + 2 
 

 

 
 
(*Good practice: Notice that the length of the line after 6 is 
longer to mach the current value of age variable on the top) 

 
Translate these JavaScript variables into the visual syntax 
 
JavaScript Syntax Visual Syntax 
var temperatureC° = 15 
temparatureC° = 30 
temperatureC° = 13 
temperatureC° = 16 
 

 
 

var sports = “football, tennis and yoga” 
sports = “pin-pong and gymnastics” 
sports = “golf and tennis” 
  

 
 

var colorRGB = “13, 55, 255” 
colorRGB = “33, 21, 12” 
colorRGB = “0, 0 ,0” 
 

 
 

 
Translate to JavaScript syntax these visual variables 
 
JavaScript Syntax Visual Syntax 
 
 
 
 

 
 

 
 
  
 

 

 

  
 
 
 

 
 

 
Create your own variables 
 
JavaScript Syntax Visual Syntax 
 
 
 
 
 

 
 

  
 
 
 
 

 
 

 
 
 
 
 

 
 

 
  



 

UNIT 2 / Functions 

*NOTE: The graphic representation of functions is still under development. The new version will better represent how the order of 
the imputs affects the output, the role of functions as a sub-routine within the whole sequence of the code, and an integration of 
variable containers as parameters of the function and values as arguments.   
 
Outcome: 
Understanding the concept of function using the machine analogy.  
Adquisition of the visual syntaxis for functions. 
Knowledge (Students will understand that) Skills (Students will be able to) 
 
- Functions are like machines. Machines do the things that we 
program them to do, but no other things.  
- Functions as machines have a name that could be arbitrary  
- Functions as well as machines can be installed, or defined 
- Functions as well as machines need an input or raw materials 
to do things. Those inputs are known as arguments.  
- For machines to do things you need to press the button. In 
functions, you have to call them.  
 
Predictable misunderstanding to tackle: 
-Difference between defining a function and calling a function: 
When you are defining a function it is not doing anything yet, 
in the same way that an ATM can be installed but not doing 
anything until you call him by inserting your card 
 

 
- Create functions using the machine visualization 
- Being able to see how using different arguments in a same 
function generate different returns 
- Translate functions wrote in JavaScript to the visual language 
and vice versa.  
 

Essential Questions Assessment: Learning Evidence 
 
-What are examples of machines that you commonly use? 
-What does a coffee machine do and what it not do? 
-What machines need to have in order to work? (e.g.: ATM) 

 
- Peer review of their translation sheets, self-explanations, 
analysis of how students are using the visual language 

Learning Activities 
1.Introduction to functions 
-Functions are like machines. They 
do things that we program them to 
do, but no other things. For 
example, we want to do a coffee 
machine that if we put inside it 
coffee beans, water and sugar it 
will give us a cup of coffee.  
 
-To install the machine the first 
step is give it a name, it could be 
an arbitrary name but preferable 
meaningful.  
 
-The second step is to decide what 
the machine needs in order to do 
something. In this case the machine 
needs some beans, something liquid 
and sweetener. These are known as 
paramenters.  
 
-The third step is to decide what 
the machine is going to do with 
those arguments. In this case, it 
will be a cup of coffee. This is 
what the function returns.The 
machine is already installed it can 
be said that it has been defined 
 
-You can install a machine as we 
have previously done but if you 
never feed it with raw materials it 
will never do anything. We are 
going to put coffee beans, water 
and sugar into this machine. These 
imputs are going to be the 
arguments.  
 
-Lastly, if you don’t press the 
button of the machine it will never 
do anything. Pressing the button of 
a function is known as calling the 
function. We can call a function by 
saying its name and specifying the 
arguments For example, we call the 
coffeemaker with coffee beans, 
water and sugar and it will return 
us a cup of coffee.  

 

 
 

 
 

 
 
 

 
 
 

 
 
 

 

 
2. Introducing the visual language 
- To simplify our visual language, we are going to use the 
following primitives: 
 
- This is the icon for a function 
 

 
 
- This is the icon to define a function, with parameters, name 
and what it is going to return 
 

 
 
-This is how we represent that we are calling a function that 
have been previously defined 
 

�
 
3.Translate a code wrote in JavaScript syntax to the visual 
language (next page) 
 
 
 
 
 
 
  



 
 
Examples of translation 
 
JavaScript Syntax Visual Syntax 
 
function convertToF°(temperatureC°) 
   return temperatureC° * 1.8 + 32 
 
 

 

 

 
convertToF°(25) 
  
 

 

 

 
function makeLunch(food, moreFood) 
   return food + “ and “ + moreFood 
 

 

 
 
makeLunch (chips, fish) 
   return chips + “ and “ + fish 
 

 

 
(*Notice that the order of the arguments is important and as a 
result we get for lunch chips and fish and not fish and chips 

 
Translate this JavaScript function to the visual syntax 
 
JavaScript Syntax Visual Syntax 
 
function getSquareArea(side) 
   return side * side 
 
 

 
 

 
getSquareArea(8) 
  
 

 
 
 
 
 

 
function yourFuture(numberOfChildrens, TypeOfHouse) 
   return “You will have “ + numberofChildren + “and live in a ”       
+ typeOfHouse 
 

  
 

 
yourFuture(20, Mansion) 
 

 
 
 
 
 

 
 
Make your own functions and write them in JavaScript Syntax and visual Syntax 
 
JavaScript Syntax Visual Syntax 
 
 
 
 

 
 

 
 

 
 
 
 
 

 
 
 
 
 

  
 

 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 



 

UNIT 3 / Variables and Functions 

 
Outcome: 
Understand how variables and functions can work together and how this can be represented visually by using certain structure and 
rules to organize them (grammar of the visual language) 
 
Knowledge (Students will understand that) Skills (Students will be able to) 
 
- Functions can use values stored in variables 
- Variables can store functions 
- Functions can be defined to change the values of variables 
 
 

 
- Create functions using pre-defined values stored in variables 
- Create functions defined to change the values of variables 
- Translate Javascript code composed by interrelated functions 
and variables to the visual language using visual syntax and 
visual structure or grammar.  
 

Essential Questions Assessment: Learning Evidence 
 
-What is the purpose of combining functions and variables? 
-Could the value of a variable be a function? 
-Which is the value of x variable in this point of the code? 
Wich is in this other point? 
-What specific differences you notice between your visual map 
and the one of your classmate? 
 

 
1. Quiz with complex set of interrelated variables and 

functions that should be solved using the visual 
language 

2. Correction of the quiz 
3. Peers work to generate a new visual representation that 

solve the quiz correctly 
4. Second quiz  
5. Correction of the quiz and analysis of progress in 

terms of results and quality of their visual 
representations 
 

Learning Activities 
 
1.Learning visual structure and rules to organize our already acquired visual vocabulary: 
- In Class exercise (next page). Each student will receive a JavaScript code and a large sheet of paper to make the translation to 
the visual language following these instructions that will guide them through good practices: 
 
a. Rotate the sheet of paper to use it in a horizontal way 
b. Draw a horizontal line approx. 3 inches below the top of the page 
c. You will use the top side of the page to “install” your machine functions and the bottom side to draw your variables boxes 
d. Read the code line by line and for each line draw the correspondent representation. If it is a function draw in the top, if it is 
a variable draw it below the line.  
e. When it is a variable first draw the variable label on the left and then it’s value on a box connected by a line.  
f. Draw the next variable below the previous one and connect it’s value with a line that is longer that the previous one, so that 
you can take in consideration the values of previous variables when making this new one in the case that you need them.  
  
*Note: all these instructions seems complicated but they are pretty simple when you put them in practice, so is important that the 
teacher makes a clear demonstatration of the process.  
 

 
  



 
Make a visual representation of this JavaScript code using the visual language 
 
 
function getReady(jump, sing); 
 return jump + “ and + ” sing; 
 
 
function makeExcercise(bike, helmet); 
 return “pick your ” + getReady(bike, helmet) + “ and go”; 
 
 
function getDress(sneakers); 
 return sneakers; 
 
 
function getStrong(mix, swim, sing); 
 return mix(swim, sing); 
 
 
function askSiri(what) 
      return “It’s a perfect day for ” + what 
 
 
var clothes = “shorts”; 
 
 
var extraClothes = “gloves”; 
 
 
extraClothes = clothes + extraClothes 
 
 
clothes = “pants”; 
 
 
clothes = getReady(extraClothes, clothes); 
 
 
var running = makeExcercise(clothes, extraClothes); 
 
 
var record = getReady; 
 
 
var moreExcercises = getDress(record); 
 
var jumping = moreExcercises(”jump”, “clap”); 
 
 
var last = getStrong(record, “sing”,”walk”); 
 
 
var justDoSomething = askSiri(last);  
 
 
Question: What is the value of justDoSomething? 
 

 
 
(Answer in the next page)



clothes

jump

sing

jump + “ and “ + sing

bike

helmet

“pick your ”+ getReady(bike, helmet) + “ and go”makeExcercise

sneakers

sneakersgetDress

mix

swim
sing

mix(swim, sing)getStrong

what

“It’s a perfect day for ” + whataskSiri

“pants”

extraClothes “gloves”

◙ getReady

◙ getDress(record)

◙ getDress(◙ getReady)

◙ getReady

moreExcercises(”jump”, “clap”)

◙ askSiri(last)

◙ getReady(”jump”, “clap”)
”jump and clap”

◙ getStrong(record, “sing”, “walk”)

◙ getReady(“sing”, “walk”)

“sing and walk”

record(“sing”, “walk”)

running

record

moreExcercises

jumping

last

justDoSomething

clothes + extraClothes

“shorts” + “gloves”

“shortsgloves”

◙ getReady(extraClothes, clothes)

“shortsgloves and pants”

◙ getReady(shortsgloves, pants)

◙ makeExcercise(clothes, extraClothes)

“pick your ”+ ◙getReady(“shortsgloves and pants”,“shortsgloves”) + “ and go”

“pick your shortsgloves and pants and shortsgloves and go”

◙ makeExcercise(“shortsgloves and pants”,“shortsgloves”)

“It’s a perfect day for sing and walk”

clothes

jump

sing

jump + “ and “ + singgetReady

“shorts”




